# Slurry Transportation and Its Effect on Dredge Pipe in a Dredger 

${ }^{1}$ Pushkal Srivastava, ${ }^{2}$ Karanbir Singh Sidhu, ${ }^{3}$ Shahbaz Singh<br>${ }^{1,2}$ M.Tech Students in Dredging and Harbour Engineering, IMU, Visakhapatnam<br>${ }^{3}$ Lecturer, GNDPC, Ludhiana, Punjab


#### Abstract

There is a great deal of misinformation in the industry on pumping high density, viscous slurries. These misconceptions become "accepted truths" as time goes on and at best hinder and at worst stop, implementation of appropriate technology. Unfortunately, the root of these misconceptions is often due to experiences gained on poorly understood, designed or implemented systems. Advancement in a technology can only be realized by formulation of new methods of calculation. The objective of this project is to address some issues by tracing historic development of pumping and how the efficiency can be increased. It is accepted that many of the fundamental problems cannot be resolved and continued improvements in slurry transport will mean that new challenges will arise. However, there is a better understanding of how to increase the efficiency by varying pipe diameters.


Keywords: slurry transport, industry, varying pipe diameters.

## 1. INTRODUCTION

Vast tonnages are pumped every year in the form of solid-liquid mixtures, known as slurries. The application which involves the largest quantities is the dredging industry, continually maintaining navigation in harbours and rivers, altering coastlines and winning material for landfill and construction purposes. As a single dredge may be required to maintain a through put of 7000 tonnes of slurry per hour or more, thus very large centrifugal pumps are used. For slurries of very fine particles - say with hindered settling velocity less than about $1.5 \times 10^{\prime \prime \wedge} \mathrm{m} / \mathrm{s}$ - then the tendency for the particles to settle out from the liquid can be neglected. As a result, the slurry can be treated for most purposes as a single-phase fluid. The particles move at the local fluid velocity. Therefore the delivered and in situ concentrations are identical and, provided that the line is not left full of stagnant slurry for an extended period, a stationary bed of solids does not form. Set against these simplifications is the fact that the slurry usually shows non-Newtonian behaviour. As a result of these general properties, the friction gradient for a non-settling slurry varies with mixture velocity and solids concentration. The friction gradient, jm , is given in terms of the head loss of mixture. The rising curve to the right of the figure represents turbulent flow. If the friction factor is constant, the turbulent curve is a single line with jm proportional to $v_{m}$, as shown on the figure. If the friction factor varies with volumetric solids concentration Cy , turbulent flow will be represented by a bundle of curves rather than a single curve.


# International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) 

Vol. 6, Issue 1, pp: (200-205), Month: April - September 2018, Available at: www.researchpublish.com

## Effect of Concentration on Friction Gradient for Homogenous slurries.

The behaviour in laminar flow depends strongly on solids concentration, via the rheological characteristics of the slurry. Figure 3.1 shows laminar flow lines for a series of concentrations, increasing from Cvi to Cv 4 . The first of these, Cvi, represents a relatively low solids concentration. This curve for laminar flow passes through or close to the origin, corresponding to zero or negligible yield stress. The friction gradient typically increases less than proportionately to Vm. At mixture velocity VTI the laminar flow characteristic intersects the characteristic for turbulent flow. As a first approximation this x intercept can be taken as the transition between laminar and turbulent flow.

## 2. METHODOLOGY

Soil properties are established by sampling of marine soils and forwarding the sample to laboratory for testing. Generally, in shallow waters the techniques of drilling and sampling used on land can be adapted, utilizing a jackup barge or a fixed platform. In the deep ocean, because of the great water depth, the sampling of soil sediments often involves more complicated equipment and techniques than sampling on land or near shore. In deeper waters, sampling must be done from a floating vessel. Gravity corers and vibracorers are usually used to obtain samples in the upper 10 to 20 feet. Below this soil depth, drilling rigs and wire line sampling techniques are normally used. The performance of these sampling techniques in the deep ocean is limited by the handling capability of the supporting vessel and the weather conditions. Once the soil has been identified whether sand or clay, its concentration as slurry on transportation pipe is estimated. In this paper, no attempt is made to provide a general formula for the calculation of the pipeline resistance for straight pipes, only calculations are made on basis of most commonly used formulae.

## 3. CONCENTRATION IN PIPELINE

The mixture flow Q will be defined as the amount of mixture passing through the cross section of the pipe per unit of time. In a closed system the flow is equal for all the cross sections and the average mixture velocity for a certain crosssection follows from:


When the pipe line system is made from parts with different diameter the flow in all the parts will be the same and thus the velocity differs. This must be taken in account when the mixture is transported with very low speeds. Locally it will be possible that the mixture velocity becomes too low, resulting in a depot in the pipeline. As a result of the depot in the pipeline, the cross section available for the passage of the mixture will be reduced and the local mixture velocity will be increased. For the calculation of the mean velocity the total cross-section of the pipe is still being used.

For the mixture:
Mass $_{\text {mixture }}=$ Mass $_{\text {grains }}{ }^{+}$Mass $_{\text {water }}$ or $\rho_{\mathrm{m}} \cdot \mathrm{V}_{\mathrm{m}}=\rho_{\mathrm{g}} \cdot \mathrm{V}_{\mathrm{g}}+\left(\mathrm{V}_{\mathrm{m}}-\mathrm{V}_{\mathrm{g}}\right) \cdot \mathrm{P}_{\mathrm{w}}$
Dividing by $\mathrm{V}_{\mathrm{m}}$ we get
$\rho_{\mathrm{m}}=\rho_{\mathrm{g} .} \mathrm{C}_{\mathrm{v}}+\left(1-\mathrm{C}_{\mathrm{v}}\right) \cdot \rho_{\mathrm{w}} \quad$ as $\mathrm{C}_{\mathrm{V}}=\mathrm{V}_{\mathrm{g}} / \mathrm{V}_{\mathrm{m}}$
$\mathrm{C}_{\mathrm{v}}$ is volumetric concentration of grains
$\mathrm{V}_{\mathrm{g}}$ is volume of grains
$\mathrm{V}_{\mathrm{m}}$ is Volume of total mixture
A property of the soil, which is important for dredging, is the density of the components in the mixture. The density is the mass of the solid divided by the volume of the solid. There is a wide range of applications when solids being conveyed have a density of the grain around $2650 \mathrm{~kg} / \mathrm{m}^{3}$, a typical value for sand and gravel. Values of densities for many materials,

# International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) 

Vol. 6, Issue 1, pp: (200-205), Month: April - September 2018, Available at: www.researchpublish.com
such as minerals, ores, rocks, etc. may be found in various handbooks. The liquid most commonly used is fresh water with a density of about $1000 \mathrm{~kg} / \mathrm{m}^{3}$, but in marine dredging operations, the carrier fluid is sea water, hence the density is $\mathbf{1 0 2 5} \mathbf{~ k g} / \mathbf{m}^{3}$. The volumetric concentration is based on the density of the grain and therefore the production calculated with this concentration is the amount of transported solids. This production is for aggregate mining very important, for capital and maintenance dredging the amount of m 3 soil dredged from a harbour or brought to a deposit will be important. Soil consists of a combination of grains and water (sometimes also gas). The presence of water, with a lower density, in the voids between the grains results in a reduction of the density of the soil. The combined density is called the density in situ of the soil $\rho_{\mathrm{s}}$.

## 4. RESISTANCE IN PIPELINE

The working point or manometric head of a dredge pump is determined by the intersection, in the Q-H diagram, of the pump characteristics and the pipeline characteristics. The pipeline characteristics is the sum of all the resistance's in the suction and discharge pipeline of a hydraulic transport system and includes also the effects of acceleration and the pressure loss due to changes in pipe elevation. The most important system parameter is how pressure head varies with slurry flow rate, depicted by the system curve. This relationship is used to match pump and system characteristics, and to predict the likely maximum pressure within the systems so that suitable pipe materials and wall thickness can be specified. The head of the dredge pump must be enough to overcome all the resistances, including the acceleration and the geodetic head, within the normal working range of a dredge pump. Total pressure losses need


FLOWRATE to be estimated before a pump type can be selected and sized, and its power requirements assessed. Before the resistance curve can be determined, a schematic diagram of the pipe line lay-out is required. This includes pipe section lengths and diameters, bends, hoses, Y-pieces, suction and discharge arrangements and changes in elevation. The liquid most commonly used for the transportation is water although liquors, brines and hydrocarbons have been used. The solids are usually products of the mineral industry although agricultural and food products are also pipelines in slurry form. The mineral solids may be raw ores, beneficiated ores and tailings.

Slurry friction losses through pipes and fittings can be estimated using a wide range of empirical, semi-empirical or analytical equations. In literature an enormously number of formulas is given, most of them only valid for a small range of applications and extrapolation can led to a disastrously result.

## 5. CALCULATIONS AND RESULTS

## For Sand:



International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) Vol. 6, Issue 1, pp: (200-205), Month: April - September 2018, Available at: www.researchpublish.com


International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online) Vol. 6, Issue 1, pp: (200-205), Month: April - September 2018, Available at: www.researchpublish.com


## For Clay:




## 6. CONCLUSIONS

## For sand:

1) Total payload was 16000 tons. The aim was to calculate the slurry flowrate through the diameter of pipe(keeping diameter constant) and calculating power and efficiency for the same.
2) With various calculations it was concluded that for a flow rate of $4180.879 \mathrm{cum} / \mathrm{hr}$, the pipe diameter required is $30 \mathrm{inch}(762 \mathrm{~mm})$ and the required velocity is $2.54 \mathrm{~m} / \mathrm{s}$ (as specified for coarse sand $2-3.25 \mathrm{~m} / \mathrm{s}$ ).

International Journal of Civil and Structural Engineering Research ISSN 2348-7607 (Online)
Vol. 6, Issue 1, pp: (200-205), Month: April - September 2018, Available at: www.researchpublish.com
3) The frictional losses for 300 m length of pipe is 4.17 m . The suction head and discharge head was 3 m and 7 m respectively.
4) According to thumb rule of centrifugal pumps, the suction velocity must be kept lower than the delivered velocity that is less than or equal to $2 \mathrm{~m} / \mathrm{s}$ in this case. Therefore, the suction velocity from the calculation is $2 \mathrm{~m} / \mathrm{s}$ with corresponding inlet pipe diameter of 860 mm .
5) After considering the loss at pipe discharge $(0.25 \mathrm{~m})$ and loss at pipe suction $(0.4 \mathrm{~m})$ the manometric head was 14.8 m .
6) Hence the efficiency and power of the required centrifugal pump with the above parameters for pumping sand is $44.88 \%$ and 1351.51 kW .

## For Clay:

1) Total payload was 16000 tons. The aim was to calculate the slurry flowrate through the diameter of pipe (keeping diameter constant) and calculating power and efficiency for the same.
2) With various calculations it was concluded that for a flow rate of 1834.71 cum $/ \mathrm{hr}$, the pipe diameter required is $30 \mathrm{inch}(762 \mathrm{~mm})$ and the required velocity is $2.712 \mathrm{~m} / \mathrm{s}$.
3) The frictional losses for 300 m length of pipe is 0.8 m . The suction head and discharge head was 3 m and 7 m respectively.
4) Keeping the suction diameter of pipe same as that for sand $(860 \mathrm{~mm})$.The required suction velocity was $0.75 \mathrm{~m} / \mathrm{s}$
5) After considering the loss at pipe discharge $(0.06 \mathrm{~m})$ and loss at pipe suction $(0.03 \mathrm{~m})$ the manometric head was 10.8 m .
6) Hence the efficiency and power of the required centrifugal pump with the above parameters for pumping sand is $56.5 \%$ and 1200.42 kW

From the calculation by varying the payloads the delivery pipe diameter can be decided and the best of four can be selected and the same should be kept constant. By this constant value the pump flowrate can be calculated which can be varied by varying the rpm of pump when the pump impeller is kept constant.

## REFERENCES

[1] SP-2209-OCN Handbook for Marine Geotechnical Engineering
[2] Soil water mixture and its phases-TUDelft,Neitherlands.
[3] Van den Berg,C.H.Pipelines as transportation system.Europe mining course proceedings,MTI
[4] Govier GW and Aziz K.The flow of complex mixtures in pipes ,Van Nostrand Reinhold Company
[5] Matousek,V.Flow Mechanism of sand water mixtures in pipelines.DelftNeitherlands
[6] TID-Introduction to slurry transport by TU delft
[7] Dredge plant specification from Damen.com
[8] Slurry pumping by Warman
[9] Wilson K.C. (2006). Slurry Transport Using Centrifugal Pumps, 3ed. Springer.
[10] Wilson K.C. and G.R. Addie (1997). Coarse-Particle Pipeline Transport: Effect of Particle Degradation on Friction. Power Technology 94, pp. 235-238.
[11] BHRA Fluid Engineering, "Pnematic Transport of solids in pipes", Cranfield, Bedford, U.K., (1973)
[12] Hayden J. et. al. " Hydraulic Conveyance of Soilds in Pipes", Univ. of Pennsylvania, Philadelphia, March (1968)

